Example 3.2

Calculating the Highest Order Possible

Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is the highest-order constructive interference possible with the system described in the preceding example?

Strategy

The equation $d \sin \theta = m\lambda$ (for $m = 0, \pm 1, \pm 2, \pm 3...$) describes constructive interference from two slits. For fixed values of d and λ , the larger m is, the larger $\sin \theta$ is. However, the maximum value that $\sin \theta$ can have is 1, for an angle of 90° . (Larger angles imply that light goes backward and does not reach the screen at all.) Let us find what value of m corresponds to this maximum diffraction angle.

Solution

Solving the equation $d \sin \theta = m\lambda$ for *m* gives

$$m = \frac{d\sin\theta}{\lambda}.$$

Taking $\sin \theta = 1$ and substituting the values of *d* and λ from the preceding example gives

$$m = \frac{(0.0100 \text{ mm})(1)}{633 \text{ nm}} \approx 15.8.$$

Therefore, the largest integer *m* can be is 15, or m = 15.

Significance

The number of fringes depends on the wavelength and slit separation. The number of fringes is very large for large slit separations. However, recall (see **The Propagation of Light** and the introduction for this chapter) that wave interference is only prominent when the wave interacts with objects that are not large compared to the wavelength. Therefore, if the slit separation and the sizes of the slits become much greater than the wavelength, the intensity pattern of light on the screen changes, so there are simply two bright lines cast by the slits, as expected, when light behaves like rays. We also note that the fringes get fainter farther away from the center. Consequently, not all 15 fringes may be observable.

3.1 Check Your Understanding In the system used in the preceding examples, at what angles are the first and the second bright fringes formed?

3.3 Multiple-Slit Interference

Learning Objectives

By the end of this section, you will be able to:

Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us a historical insight into Thomas Young's experiments. However, much of the modern-day application of slit interference uses not just two slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating, an important tool in optical analysis, which we discuss in detail in **Diffraction**. Here, we start the analysis of multiple-slit interference by taking the results from our analysis of the double slit (N = 2) and extending it to configurations with three, four, and much larger numbers of slits.

Figure 3.9 shows the simplest case of multiple-slit interference, with three slits, or N = 3. The spacing between slits is *d*, and the path length difference between adjacent slits is $d \sin \theta$, same as the case for the double slit. What is new is that the path length difference for the first and the third slits is $2d \sin \theta$. The condition for constructive interference is the same as

for the double slit, that is

$$d\sin\theta = m\lambda.$$

When this condition is met, $2d \sin \theta$ is automatically a multiple of λ , so all three rays combine constructively, and the bright fringes that occur here are called **principal maxima**. But what happens when the path length difference between adjacent slits is only $\lambda/2$? We can think of the first and second rays as interfering destructively, but the third ray remains unaltered. Instead of obtaining a dark fringe, or a minimum, as we did for the double slit, we see a **secondary maximum** with intensity lower than the principal maxima.

Figure 3.9 Interference with three slits. Different pairs of emerging rays can combine constructively or destructively at the same time, leading to secondary maxima.

In general, for *N* slits, these secondary maxima occur whenever an unpaired ray is present that does not go away due to destructive interference. This occurs at (N - 2) evenly spaced positions between the principal maxima. The amplitude of the electromagnetic wave is correspondingly diminished to 1/N of the wave at the principal maxima, and the light intensity,

being proportional to the square of the wave amplitude, is diminished to $1/N^2$ of the intensity compared to the principal maxima. As **Figure 3.10** shows, a dark fringe is located between every maximum (principal or secondary). As *N* grows larger and the number of bright and dark fringes increase, the widths of the maxima become narrower due to the closely located neighboring dark fringes. Because the total amount of light energy remains unaltered, narrower maxima require that each maximum reaches a correspondingly higher intensity.

Figure 3.10 Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear, but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

3.4 Interference in Thin Films

Learning Objectives

By the end of this section, you will be able to:

- · Describe the phase changes that occur upon reflection
- Describe fringes established by reflected rays of a common source
- Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest colors are those that interfere constructively. This interference is between light reflected from different surfaces of a thin film; thus, the effect is known as **thin-film interference**.

As we noted before, interference effects are most prominent when light interacts with something having a size similar to its wavelength. A thin film is one having a thickness *t* smaller than a few times the wavelength of light, λ . Since color is associated indirectly with λ and because all interference depends in some way on the ratio of λ to the size of the object involved, we should expect to see different colors for different thicknesses of a film, as in **Figure 3.11**.

Figure 3.11 These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)